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ABSTRACT

We calculate the polarization position angle as a function of pulse longitude and polarization limiting
radius in radio pulsars assuming a vacuum magnetic field. We also estimate the polarization radius, Iy, based
on the calculations of Cheng and Ruderman and Stinebring. We find that for rotation periods P < 0.06 s
r &2 % 10°(P/1 5)7% cm and for P > 0.06 s r,; & 9 x 108(P/1 5)®* cm for a surface magnetic field strength of
10** G and radio frequency of 10° Hz. For short rotation periods, r,,; approaches the light cylinder radius, r,,.
Here the magnetic field becomes more azimuthal, and the excursion in position angle over a pulse is less, on
average, than when r, < r,. We calculate the average change in position angle and find, consistency with the
observations, as summarized by Narayan and Vivekanand. This work provides an alternative to their
“elliptical beam™ hypothesis. Qur interpretation is further supported by the frequency dependence of polariz-
ation angle swing in the Crab pulsar, and the frequency of single, double, and multiple pulse components, and

* is consistent with the number of observed pulsars in plerions.

Subject headings: polarization — pulsars — stars: magnetic

1. INTRODUCTION

Current models of radio pulsars (e.g.,, Ruderman and Suther-
land 1975; Arons and Scharlemann 1979; Arons 1983) predict
an outflowing electron-positron plasma through which radio
waves propagate. Propagation through this plasma should
have several observational consequences (sec, e.g., Melrose and
Stoneham 1977; Melrose 1979; Cheng and Ruderman 1979,
hereafter CR; Blandford and Scharlemann 1976; Stinebring
1982; Barnard and Arons 1986, hereafter BA), In particular, it
has been found that the polarization state of the radio emission
will be fixed at a polarization limiting radius r,; (Melrose and
Stoneham 1977; CR; Stinebring 1982) where the two wave
modes subsequently maintain a nearly fixed phase relationship
and thus maintain a nearly constant polarization state. In this
paper we examine the magnitude of r; and find that at some
radio frequencies, pulsar rotation periods P, and surface mag-
netic field strengths B,, this may occur at distances comparable
to the light cylinder radius, r.. As this radius is approached the
field lines become quite swept back, exhibiting an increasingly
azimuthal nature. When ry ~ ry;, the familiar S-shaped swing
in polarization angle (see Radhakrishnan and Cooke 1969;
Manchester and Taylor 1977) will be modified. Since r; ~ r,
implies that the field will become more uniform where the
polarization is fixed, the polarization angle will typically
undergo a smaller swing. Recently, Narayan and Vivekanand
(1983, hereafter NV; see also Jones 1980) have found that in
fact the average swing in polarization position angles is less
than expected from a rotating magnetic dipole with a circular
emission cone at short rotation periods. They concluded that
the cones are highly elliptical with small axis perpendicular to
the rotation axis. Electrodynamic models suggest that the
beams should be roughly circular (see, e.g., Ruderman and
Sutherland 1975 or Barnard and Arons 1982), or kidney
shaped with widest dimension oppositely oriented to that of
NV (as in Arons and Scharlemann 1979). In this paper we
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examine the consequences of azimuthal fields for pulsar
polarization swings quantitatively, and suggest that Narayan
and Vivekanands’s observation is a result of the effects of the
rotationally induced azimuthal fields. In § I we calculate the
position angle as a function of pulse longitude for several
values of the polarization limiting radius r,, assuming that the
magnetic field is that due to the vacuurm rotator (as in Deutsch
1955) and indicate the modifications to the calculation when a
more realistic wind model is used. In § ITI, we estimate r; as a
function of P, B,, radio frequency v, and plasma parameters,
using the results of Melrose (1979), Stinebring (1982), and CR.

In §IV we calculate average polarization swings and
compare with those found by NV. In § V we discuss the fre-
quency dependence of position angle swing and compare with
the Crab pulsar—the pulsar with observations of position
angle covering many decades in frequency.

IL. POLARIZATION POSITION ANGLE

a) Geometry of Position Angle Swing

Current work on pulsar emission and transfer mechanisms
{e.z., Melrose 1979; CR; Stinebring 1982; Arons and Barnard
1986; BA]) all have in common the fact that the polarization
state of the radio {or higher frequency emission) will be such as
to be either parallel or perpendicular to the projection of the
local magnetic field onto the plane perpendicular to the line of
sight to the pulsar when r < r;. In the following discussion, we
will calculate the emission point as a function of pulse longi-
tude by assuming that the dipolar magnetic ficld at emission
point is parallel to the line of sight to the pulsar, which is
conveniently done in the spherical coordinates aligned with the
magnetic dipole. We then convert to Cartesian coordinates in
the inertial frame and solve for the subsequent coordinates of
the ray as a function of radius. Allowing for the finite travel
time of the ray and the concurrent rotation of the pulsar, we
may calculate the local magnetic field direction, at some given
radjus (ie., at r,) and pulse longitude using a specified mag-
netic field. The projection of the field onto the plane perpen-
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dicular to the line of sight then determines the polarization
angle.

In order to calculate the position angle we choose a fiducial
direction to be the projection of the rotation axis, £2, onto the
plane perpendicular to the direction of the line of sight, n. We
wish to calculate the angle 1y between this direction and the
projected magnetic field. We construct a Cartesian coordinate
system with z-axis along the rotation axis, and x-axis in the
(n, ©) plane. Let « be the angle between # and £, and let b be
the unit magnetic field vector. Then, as shown in BA:

tan g =[1 — (b ) — (- b)* — (n - Q)?

+ 20 - b)(n Q) - H]'/[b- L —(n- b)n- Q] (1)

This can be considerably simplified to
tan ¢ = by(b. sin e — b, cos &)™, 2)

If the emission occurs near enough to the star such that the
magnetic field is to a good approxnnatlon that of a dipole,
inclined by an angle i from the rotation axis, then the coordi-
nates of the emission points of a ray that travels straight in the
inertial frame are given by:

tan ¢, = (sin & sin a)/(cos i sin « cos & — sin i cos ),
0; = 3 — 1)* + 8% sin? 2]'. {3)
Here ¢, and 8, are the azimuth and colatitude, respectively, of
the emission point in spherical coordinates aligned with the
{rotating) magnetic dipole, and 4§ is the azimuth of the dipole in
the fixed laboratory frame, Note that for a given o, i, and 6, the
emission radius r, is arbitrary, whereas ¢y and 8, are deter-

mined. Expressed in the fixed laboratory frame, the Cartesian
coordinates (x,, y,, z,) of the emission point are then

x, = (r, sin 0, cos ¢y cos i -+ r, cos f, sin i) cos &
—r, sin §; sin ¢, 5in &,

Y. =7, sin co; & 4)
- {r, sin 8, cos ¢, cos i + r, cos B, sin i) sin d,

z, = r, cos #, cos i — r, sin 8, cos ¢, sin .

If the rays travel straight paths in the inertial frame, the
Cartesian coordinates (x, y, z) at radius r will be
x=Xx,+(z—z)tan o,

Y=VYe>»
z = sin ®z, §in & — x, COS &)

®

+ cos ofr? — y2 —(z, sin @ — x, cos «)*]"* .

Equation (5) simply reflects the fact that all rays that reach the
observer travel in planes parallel to the (x, z)-plane at an angle
o from the z-axis.

The extremes in 8 (6,,,, and 6,,;,) for which the pulsar will be
observed depend on i, o, and the half-angle of the cone of
emission £,

tSrnin = i[é_zf

b) Specifying the Magnetic Field

To calculate the excursion in i as § varies between 6., and
Somuy fOr a given pulsar orientation {x and i) and emission cone

— (@ — ¥ sin a . {6y

half-angle & s one needs to specify the radius ry; at which the
polarization is determined and the magnetic field orientation
at that radius.

The self-consistent solution to the magnetic and electric field
structure and the plasma distribution in that field has of yet
not been obtained. An exact solution to the fields surrounding
a rotating conducting sphere in vacuc was obtained by
Deutsch (1955). Although this is probably a poor approx-
imation to the electric fields near a pulsar (since the plasma can
easily short out much of the parallel electric field), the magnetic
field should be well represented as long as the magnetic energy
density exceeds the plasma energy density and the conduction
currents are small.

Thé spherical components in Deutsch’s solution can be
written:

B, = Bnl:(ij-)3 cosicos
+ (E)Z(RQ) sin i sin @ sin ({ + 4)
( ) sint i sin 0 cos (£ +))}
1 . RONY/RY (RY
u=5 cos:51n9+ T) T)_ "
% sin i cos 6 cos {{ + 4) — (RCQ)(T)’

x sin { cos @ sin ({ + ).)} ,

B, = — % B, sin z{(%)(-}})_ cos {{ + 2}
2 3
(-} o

Here B, is an arbitrary normalization, { = rQ/c, i= ¢ —

0 =9/, and t is the time such that the dipole is in the (n, £2)-
plane when t = 0. For a ray emitted in the direction of the
observer t = §/Q + (R — r,)/c. Equation (7) is approxzimate in
that it assumes (R€/c) < 1, which is a good approximation
even for millisecond pulsars. Here R is the radins of the star
taken throughout this paper to 10% cm.

Equation (7) should be valid (if conduction currents are
small) if » < r,, where r, is the Alfvén radius, i.., the radius at
which the particle kinetic energy density is equal to the mag-
netic ficld energy density.

An estimate of r, can be obtained from polar cap-pair cre-
ation models as in Ruderman and Sutherland (1975), Arons
and Scharlemann (1979), or Arons (1983). As discussed in, for
example, Arons and Barnard {1986) the kinetic energy density
T can be estimated as

T = engeAdin/ng) . 8

Here eAg ~ e(RQ/e)* B, R is the total polar cap potential avail-
able for particle acceleration, e is the fraction of eA¢ actually
obtained {which is less than unity due to pair formulation), ng
is the particle density at the surface and is approximately equal
to the corotation density, and B, is the surface magnetic field at
the pole. The quantity n/n, is proportional to the magnetic
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field strength interior to the light cylinder radius (and so~r~%),
but exterior to r,, the nearly radial trajectories of the particles
leads to a r~* dependence.

Equating T to the magnetic energy density U = B*/8n yields

a (1/4e)3r, forf<e<1
“ U1/4en,

Factors of arder unity have been dropped in evaluating (8), and
so the condition that € =3 for r, to equal r, is somewhat
oversimplified. We note that r, & r. unless e < L.

For r > r,, the plasma flows in a nearly radial direction, and
the magnetic field will be that of a “wind ™ rather than of a
vacuum “ wave " as indicated in equation {7). As in the case of
the solar wind, the condition of flux freezing leads to a pri-
marily azimuthal field. The field line equation is

dr  rd8 rsin B8dg
Br BG Bd, ’

A frozen-in field implies that a field line that is anchored ata
particular point on a surface that is corotating with the
neutron star at r = r,, will pass through the locus of all points
at which there is plasma which has passed through that partic-
ular point. Geometrical considerations show that a field line so
constructed satisfies d8/dr = 2(0,.. $i)(e/r)* (assuming slight
nonradial flow at r =r). Also it can be shown that de/
dr = —Q/v. Here § and ¢ are the colatitude and azimuth at r of
a field line originating at & = 6,., ¢ = ¢,.. r = r,. al some speci-
fied time, x is an arbitrary function, and v is the plasma veloc-
ity. Conservation of radial magnetic flux requires that

B, & BBy, e, Nicllre/1)? - (11)

®)

1
fore<gz

(10)
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Thus using equations {10) and (11), the other two components
may be written {in the limit r » r.):

By = B{re, Uier &1 101, ¢1n]("1r./")3'a (12)
Bq‘) = —“Br(rlr.s 81:' (lbli:)(rQ/v)(r]c/r)z gin 8
= —Br{rlc! 9!:! d)l:) sin B{rlc/r) . (13)

Comparison of equations (11)-{13) with equation (7) shows
that for » > ry, B, ~ B{RQ/c)*(R/r) and B, = B(RQ/c)(R/r)?
for both wind and wave magnetic fields. It is only 8, which
differs substantially in the two solutions: in the wave By =
BJRQ/c)(R/r), and in the wind B, ~ B{R/r)*.

) Evaluation of Ay

We have evaluated i as a function of pulse longitude,
assuming that the polarization is fixed at ry, for a number of
values of r, using the magnetic field of a vacuum wave {eq.
[77). This has been done numerically using equations (2)~(7)
and the appropriate coordinate transformations between
spherical and Cartesian coordinates. A typical example of the
polarization position angle swing is displayed in Figure 1. As
can be seen for r < ., the swing reproduces, as expected, the
standard S-shaped swing. However, for r & r,, the polarization
angle is nearly constant across the pulse, while for r » r,, the
change in position angle increases somewhat.

We may estimate this swing in the regimes ry <r, and
rm > e Forry €, the position angle is roughly the same as
the magnetic azimuth. Assuming that the angles 6, and & — i
are much less than unity, equation (3) becomes

tan if = dsin 2f{e — 0) (rp<€nd. (14)
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For ry » I, equation (2) becomes approximately
_ tan &= —By/By (ra 1) (13)
So that for the vacuum wave field '
tan i &= —dfcos & {1y, > g . (16)

Here we have approximated 2 + { by —é since r,Q/c <€ 0
and for 1) » ., ¢ = Oand cos 6§ = cos «.

Typically, then polarization swings in the wave field at large
radii are reduced by those at small radii by a factor of
~(@—i) <€l

In the wind field for r, » r,,, equations (12), (13), and (15)
yield

max?

tan i = sin a(ry/r1ol /(B dhe) - (17}
Since the field lines are nearly azimuthal for r, 3 ry,,
9 X
2, <20
7 thus changes very little over the pulse. Hence,
Atan 0 as ryfr,— (18)

ric

Here A tan i is the net change in tan i over the pulse. The
result in equation (18) depends on the fact that field lines from
adjacent pulsar rotation angles have their origin at the same
magnetic pole. However, for some radii an open field line from
one-pole at large radii becomes adjacent to the field line from
the opposite pole, resulting in a 180° chanpe in the magnetic
field (since it is primarily azimuthal), over a small change in
radius. However, the change in radius over which the polariz-
ation swings abruptly is small compared to the characteristic
scale of plasma parameters (~ry). Thus, it is expected that
equation {18) will be valid quite generally in the wind at large
radius.

Comparison of equations (16) and {17) reveals that because
of the much smaller #-component of the magnetic field in the

wind case polarization swings will be even smaller in the wind .

case than in the wave case.

Il ESTIMATE OF THE POLARIZATION LIMITING RADIUS, 1,
a) Basic Definition of r,,

An estimate of #, in radio pulsars has been made before by
CR and Stinebring (1982), based on the analogous problem of
determining the polarization-limiting altitude of waves in the
Earth’s ionosphere considersd by Budden (1952) and others
referenced therein. Our purpose here is to generalize their cal-
culations somewhat in order to estimate the functional depen-

dence of r;, on P, B, and other parameters.
The basic criterion used to determine r, is

Ak(ro)s(ro) = 1. (19)

Here Ak(r,) is the magnitude of the difference between the
X-mode and O-mode wave vectors at r, (see Arons and
Barnard 1986 for a discussion of X- and O-mode dispersion
properties), and s{r,) is defined as the scale length for change in
polarization parameters at r;, A more precise definition by
Budden {1952) defines s (in his paper the notation was ') by

s = |i(1 — R3)AdRo/dr)| , (20}

where Ry is the ratio of the n x Q to {n x £2) x » components
(both complex) of the electric field of the ordinary mode.
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(Budden’s criterion, analogous to eq. [19], for ry is to within a
factor of order unity the same as eq. [19], provided that
Ak »r7t)

CR and Stinebring 1982} differ somewhat in their evaluation
of equation (20). There are two contributions to the rate of
change of s: the change in direction of the magnetic field, and
the change in the plasma parameters which determine R, in
equation (20). If the modes are linearly polarized (as in the case
of an electron-positron plasma in which the components have
equal densities and Lorentz factors ), then the change in
polarization parameters is entirely due to rotation of the mag-
netic field. If  is the angle between the projection of the z-axis
and the projection of the magnetic field onto the plane perpen-
dicular to n then equation {20) can be shown to be

s = 1/|dip/dr]| . (21)

As found by CR, |dif/dr |~ is of order the radius of curvature,
¢, of the magnetic field lines (providing that the angle between
the field line and k is greater than 1/y). Thus the CR criterion
forry is

pAk=1. - {22)

Pulsar models predict, however, that the electron and posi-
tron densities are not exactly equal, and thus the polarization
state will change just due to the changes in the strength of the
magnetic field and changes in the density and velocity of the
plasma. This provides another source for the change in R, in
equation (20), Stinebring (1982) evaluated equation (20) due to
these changes in plasma parameters and found

s=(p* + g} pdg/dr — gdp/dr| ,

9= Y euaicos B, ~ f)fjog, .
p="Y wp, sin® 6, /23 (1 — §, cos ),

Jo = wp/[rz (1 — B, cos 0, — wi,]
wpflr* — 3y)

dng? njm, ,

{23)

s,
Here W, = |qa| B/"lc: C, €, = QLX/l qa:li and Ya = {1 - 'Bi)*-l,'l is
the Lorentz factor, 8, is the angle between k and &, while g,, m,,
and n, are the charge, mass, and density, respectively, of par-
ticles of species o. Also as derived by Melrose (1979) or Stine-
bring (1982), An = (¢/w)Ak is given by

An = (p* + g3 . (24)

For simplicity we choose to calculate the contribution to p and
g only from the electron-positron plasma. (See Stinebring 1982
for discussion of the effects of an energetic ion and positron
beam)}. The quantity g can be rewritten

4
9= 5 & nadieos 0~ f). (25)

Here 1, is the charge density of species «. If the positron and
electron component each are characterized by the same 7y, then
g is further simplified to

g = 4nclcos 8, — ) fir/wB . (26)

Here f'is f; evaluated for « either an eleciron or positron com-
ponent of the plasma, and 5 the net charge density is obtained
by assuming force free conditions are maintained (see Cheng
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and Ruderman 1977). Note that 5 = g = 0 for equal number
densities of electrons and positrons.

Similarly p can be estimated for an electron-posiiron
plasma:

_ w? sin® 8, f
b= 277wl — f cos 6,
In equations (22), or equations (23)+27), evaluation of the
quantities requires specifying the radial dependence of B, wy, 1,

and 8, = n,. Here n,_ is the component of # perpendicular to B,
where n = ck/w.

(27

b) Evaluationof ry

Our objective is to obtain the rough period and magnetic
field dependence of r,. We thus choose to evaluate quantities
approximately in regimes where they are proportional to a
power in the radivs and identify the boundaries of these
regimes. There are three characteristic radii which are of note.
We define r,y as the cyclotron resonance radius such that
' = wp, where o' is the wave frequency in the frame comoving
with the plasma of Lorentz factor y. The light cylinder radius
1. divides the dipolar magnetic field from the puisar wave {or
wind) field and the density profile from an r~3toanr~> depen-
dence. And, for radii greater than approximately (¢,/2}r. 11,
and the radius of curvature of the magnetic field lines p are
dominated by light cylinder effects rather than by the dipole
field.

We identify three possible cases:

Casel:

oy < (Epf2)r < Fic -
CaseI1:

(€52 < Tup < Te -
Case I1I:

(€420, < e <Tup-

We find that except for very high wave frequencies and low
magnetic field strengths cases II and ITI cover most param-
eters. We further breakdown cases T and I1I into subcases A,
B,and C:

Vol. 303

Case I1A:

(EpfAre < Tt <Tap < T
Case ITB:

(Ca2hre < Fop <P <M.
Case IIC:

EpfDre <Fug<Tc<fp -
Case IIIA:

(e <Tp <hHe<Top .
Case ITTB:

(Ep/ e < Te <Toy <Tup -
Case I11C:

(Ep/Are < Fie < Tup <Tp -

In Tables 1, 2, and 3 we list the various quantities needed in
order to evaluate equations (22) and (23). A few remarks are
in order. The value of n, used in regions ITA, IIB, and A
reflects the increased azimuthal field from rotation. It is only
for radii less than (¢/2)r, that the value of i, will be deter-
mined by tracing tays through an essentially static magnetic
dipole (as in BA). The charge density used in cases IIC, TIIB,
and 11IC is calculated in the MHD approximation and using a
radial flow velocity. That is,

q=V-Efdn=V{—v x B)fdn = cot 8(B./RYRQ/c)(R/r)* .

The other entries are typical of polar-cap, pair creation models
of pulsars (e.g, Ruderman and Sutherland 1975; Arons and
Scharlemann 1979). We take i = 10°k,; the number of pairs
per primary particle and y(= 10%y,) to be independent of P, an
approximation to the weak period dependence found in pulsar
models (see, e.g., Ruderman and Sutherland 1975; Arons and
Scharlemann 1979; Daugherty and Harding 1982),

Using Tables 1, 2, and 3 we may solve for rp and ry. Solving
@' = wp yields

Fop _ 1050B}5vy 5y 1PPY°  (case 1)
R |125B,.y3 vy P72 (case IIT) ©
Here B, = B,/10'* G and vg = v/10° Hz.

(28)

TABLE 1
EVALUATION OF QUANTITIES 1N Casks IT anmp 111

Quuntity

(fffz)rlu <rP<T

rPE>=re

B/ = 10 x 102B,,(RI G
E00y,
QB/3nc = 3338, P~ (R/r)® esu cm™?

¥QBfInce = 6.9 x 103y P~ B R/ em ™3

m3/2 = {HA(RY/c (r/R)?

=21 x 1075P"/R)?
—p32 = =22 % 1078 PTRY
ny = (RQe)r/Ry = 2.9 % 10~*P~Yr/R)
2y = 6.3 x [0%v, 57
von?/2 = 138 x 10y, vy P(r/R) 57!
6.63 x 101 'KIRPTVEBIRR 57!
1.76 x 10'°8,,(R/® s~}
¢} = 4.8 x 10°P cm

w =yl — fi cos B) ...
w, = (Bnen o /m)*?
wy=eBfme.........

BRO/CPRI) = 439 x 10°B,, PR/ G
100y,
{1/47)(B,/RYROYcP(R/r) col 8 =

348 x 10728, P~* cot ){R/r)* esu cm™
{1/ 2me)( RQ/c)*(B,/RIR/r) =

1.45 % 10'9P~ %k, B (R/r)* em™*
1

-1

1

2nv = 6.3 x 10%, 57!

yu = 6.3 x 10y, vy 877

6.5 x 0% P-1BIZR/ s~
770 % 10108, P (R/r) 57"
r = 10%¢/R) cm

3
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TABLE 2
EVALUATION OF QUANTITIES IN CaASE TT

A

Quantity (/2. <r <rFyp

B c
g ST < e <r

Feveeemsmmsesssss s sssesene i (_
S )

wisin® 0, f

P =50 — [l cos® B,

- I At
= Ancnf (cos 0, - £} 435 x 10- ”(—) Pyt
Bw r

R 5
513 x 105(7) PB L vs T My

R E]
B.44 x 1035(—;) PR} vy T Sy

R :}
7.19 x 10‘3(7) PR, w72

ez —of BY . a_apa (RY
=16x 1030]04}.2-—\,;-(—) (_c_u_?) == 1.50P'4}'§'\'J‘B;3(—)
r w r

R a
1.76 x 10'“(?) POBT vy s Py

R\? , 3
7.15 % 107% cot 0(;) S T

The division between cases 11 and 111 is thus:

P 5 0.06BM vy 3312 5 (case 1)

1/3.,—-1/3,—1/3 * (29)
P < 0.06B8vyPys 3 5 (case IED)
The light cylinder radius is
| De _ 4775p . (30)
R .

The polarization limiting radius using the CR criterion
becomes

873uc/3ys ¥y o IS PP

24 > k337 (case TIA)

0914/t 55 Hivg L3 BLLE P23
< 24 < ry772
0.2431c5y5 vy 1By, P72

5.1 > y3 e,
0.727ici3y7 53 B, P2

5.1 < y3 %k, fcase IIIC)

{case TIB} (31)

21

(case IIIA)

The solutions found for cases IIC and ITIA lie outside regions
[EC and TIIA, respectively, for normal pulsar parameters.
To evaluate the Stinebring criterion for r; we let for each of
cases [FA-ITIC
p= Pu(R/J')"'I:[ afs g = go(Rir [] ek,

t
where each of the o; are parameters such as B, ,, vy, and so on,

which are found in Tables 2 and 3, and where | |; indicates the
product of the various parameters,

Defining @ = (sAk) ™!, use of equation (23) implies
@ = l(p, — g )Nc/Ro)(R/M)pg [/(p* + g*P ;
| B — g, | (c/Rw)go/p3)(R/r)! 720 H e

Hp>g. (32)

0~
1. — g, 1(c/Rea)(po/ga)(R/r)t =720 [ | af= 2

fgep
Then r,, is defined as the point where @ = 1. Solving for r;:
3 - 1i2pr—ge—1)
! (R_w) B a;p,*ga} "
_| By — grl c fo i
ifpey (33)

—; (@) .g_% H a;’-ﬂzim}uuﬂrapr—”
1

_|pr_gr| ¢ Po i .\
fgep

=
3

Thus we find the following solutions for sAk =1, using
Stinebring’s criterion and Tables 2 and 3:

02468, vg 'y3 2y P73
{case IIIB and p & g)
<SSGB?{fz“Jc%“1')'3'6"11\r§'2"“P5“1 ) (34)
(case 11A and p 3 g}

= Je

6.0B,,15 'y, v 1P

{case ITIC and p < g)

Again we have ignored those solutions which are inconsistent.
The striking aspect of equations (31) and (34) is that both of

TABLE 3
EvALUATION OF QUANTITIES IN CAsE TIT

A

Quantity (E/Dr, <r<m,

B C
Flo <T < TFuy Fap < ¥

F e 1 1
B ay sin® 8, f
el —feos 0, T

4menfieos 0, — f) -z
g =———E—M ........ 4.35 x 10-17(5) p-3l.9—l
w r

Ry ]
p 513 x 105(—) PBvs Y3,
r

R 2
117 x 10'5(7) PTIB L vi YT,

4.77 x 1078 cot 0(5)1';1
r

A R\
(——f‘) = 1.50?'*;';2a'.;13§1(—)
al r

R +
1.76 x 10_5(:) PEBY vy T e

R 3
7.15 % lﬂ'ﬁ(—) P*Bi vy Yt cot 8
r
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them display nearly the same period dependence and are close
in magnitude to the cyclotron resonance radius equation (28).
Physically this is partly a result of the rapid decline in the
difference in indices of refraction on passing cyclotron reson-
ance. For r < 1y (and r < 1) An oz w) oo r™?, while for r >
Fom Anocw?Btocr™, This very sharp radial dependence
leads to a polarization limiting radius which is a fraction of
ryp. We have plotted r; as a function of period in Figure 2,
indicating the results of both the Stinebring and CR criteria.
We note that for P~ 0.06s, ry = for B, = 10'* G and
v = 10° Hz. It is apparent, then, that for short rotation periods
the azimuthal components of the magnetic field will be refiec-
ted in the polarization data.

1V. CHANGH IN POSITION ANGLE AVERAGED OVER
ORIENTATION ANGLES

a) (Al as afunction of ry

The resuits of § 11 allow us to calculate the change in posi-
tion angle, Ay, which should occur during one pulse, given
some r. However, for any given pulsar it is difficult to dis-
tinguish between a polarization swing in which ry = ry and
one in which | — i| = £, since both will result in small excur-
sions in position angle. We wish therefore to calculate the
average Ay expected from a large number of pulsars viewed
from random angles.

The average change in polarization angle {Air} for a group
of potentially observable pulsars with the same ry, can be
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written

CAvilrp)y = J: dif i) Lﬂ daf () Aler, 1, ra) P, o rpd/N
(35)

Here f;di is the fraction of potentially observable pulsars (with
polarization limiting radius ry), with i between i and i + di,
while f,dn is the fraction of pulsars, with « between « and
& + da, and P(i, &, ry) is the probability of observing a pulsar
with a given i and & Here N is the normalization integral

N= J; dif(i) J; def (a)P(i, &, 1)) - (36)
For a randomly distributed line of sight,
flw)=4%sine. (37

The distribution of the angle between the rotation and mag-
netic axes is unknown. Therea is neither a theoretical nor obser-
vational consensus on whether i increases or decreases with
time (see Ghash 1984, and references therein). As a first guess
we assume that i is also randomly distributed:

fiy=1%sini (38)

Since Ay is rather insensitive to i we expect the average Ay to
reflect this insensitivity, barring some malevolent distribution
ini. -

We assume pulsars all emit in a well-defined cone of half-
angle £,. That is, we assume a constant intensity for polar

6

LOG r/R
[

Fig. 2—Polarization limiting radius r, vs. pulsar rotatjon period P. Solutions for r, obtained using {a) the CR critedon {pAk = 1) and {B) the S criterion

-1 0 1

LOG P

{sAk = 1;see eq. [23]). Also shown are the cyciotron resonance radius r,,p and light cylinder radius ry.. Here Bia =ya=Vy = k3 = 1.

-~ e -
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beaming angles less than £ . The results will also be valid for a
hollow cone of emission with outer angular radivs {, and
should be approximately valid for any axisymmetric distribu-
tion with characteristic emission angle £,.

For a potentially observable pulsar to be observed, £, >
la — i|. Hence

. g > le—il
P("“’rp‘)_{o e, <ja—il &9
Using equations (36)-(39) yields
N =@ + 0. (40)

We have calculated numerically (A¢) as a function of r,
using the results of § IT and have plotted the results in Figure 3,
for three different values of £,. As can be seen for large values
of ., {(Alr) is a sensitive function of £ ;. We may independent-
ly estimate &, by looking at average pulse widths (=20,,,).
Analogous to equation (35), we have, using equation (6) and
equations (35-{39),

(2rd = N7 j”di ) f daf ()26 1 P, 9 T
0 0

L i+gr
~ A, L di sini'[ g da[ £} — (@ — i)*]'"
ef

~ 28, + O(ED) (@1)

Thus, the simple result is that the average pulse width is equal
to the angular diameter of the pulsar beam,
We may also estimate (A} in the two regimes of § 1lc. For

120 —T—T1 71
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Iy <€ Fy, equation (14) and'equations (35)-(40) yicl&s '
i+gp
de: sin o

1 T
(AP =—J di sin ff
4N Jo t—sr

x {2 tan”! {[&F — (& — 1)*Ifo — )} |
=24+ 0P rad > 115° (ry<ry).
Here {Ayr) is independent of £,
For the wave magnetic field, and ry > ry.,

" i+&r
My = j di sin i J do sin o
- Jo i-zf
x |2 tan~ ! {[£} — (a0 — i)*]"*/sin « cos ]} .
Extensive algebra leads to
(AP = EL[1 — In (4/E7)T + E30E — & In (4/Z310 + O(ED)
(P 2 Fies wave) (43)

(42)

And, in the case of the wind,

AYy—=0,ry—= 0 (e wind) ;

b} (A asa Function P

In § 11T we estimated 1y, including its dependence on period.
We may combine the results of §§ Ila and III to produce a
theoretical estimate of ¢Awr) as 4 function of rotation period.
We have graphed (Atr) versus P for three different values of £,
using the CR criterion and setting the parameters B, y2, and

20

60

<AY> (DEGREES)

30

LOG rpl/r Ic

Fig. 3—Average chunge in polurization angle (Ag) vs. r/ry, for three different values of the beaming angle £, (The emission radius is assumed (o be much less
than r, orry.}
pl e
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i3 to 1, and vy to 0.44 in Figure 4, and, with the same param-
eters except that y, = 3, in Figure 5. We have also plotted the
averages {Ay) using the data of NV. NV divided 30 pulsars
with well-measured position angles into three groups of 10,
according to rotation period. The averages and standard devi-
ations for each group are

(P =025 £ 0125, (28,0 = 21° £ 12,

CAYD = 46° + 287,
(P> =059 + 0245, (25,0 = 18£7°,

¢AYY = T79° + 57°.
¢PY =174+ 0785, (26,0 =101 9,

CAW) = 105° + 50°.

The vertical error bars in Figures 4 and 5 reflect the standard
deviation in ¢AW) divided by 3.2, the square root of the
pumber of points, while the horizontal error bars are the stan-
dard deviations in P giving an indication of bin size.

Since the average pulse widths together with equation (41)
imply &, = 10°, it is clear that Figure 5 (in which y, = 3) rep-

vesents a satisfactory fit to the data. In fact, if we define y = -

icli5y3 33 B15, we find that y ~ 0.5 provides a good fit, indicat-
ing rough consistency of polar cap plasmas in a wave magnetic
feld with the observed polarization swings. Comparison of
Figures 4 and 5 provides some indication of the sensitivity of
(A on the assumed value of the model parameters.

V. DBSERVING THE FREQUENCY DEPENDENCE OF Ay

For individual pulsars, this model predicts that the polariz-
ation swings should be weakly frequency dependent. However,

LOG P

F16. d-¢ A vs. P, for three values of beaming angle, £,. The quantity r,, is estimated using the CR criterion, with By s =7: =13 =L, und vy = 044, Dala
points are from NV {see lext).

as noted by Manchester (1971}, a striking feature of radio
pulsars is their frequency-independent polarization angles.
Examination of equation (31) reveals why this is so. The major-
ity of detailed polarization studies are at frequencies between
400 and 1600 MHz, a factor of 4 in frequency. Using the upper
of equation {31), we see that this corresponds to only a 28%
change in the polarization radius, which particularly for long-
period pulsars, corresponds to an essentially undetectable
change in polarization angle. Since the pulsars in NV cover
two decades in period and because the period dependence is
twice as sensitive as the frequency dependence, there is a 500%
change in r, as P varies from 0.06 to 3 s, which makes the
average position angle swing observably diflferent over the
range of observed periods.

There is one pulsar, however, the Crab pulsar, with polariz-
ation data separated by about six decades in frequency. The
optical data (from Kristian et al. 1970) indicate a polarization
swing of ~ 180°. Although the optical emission and radio emis~
sion are likely to have different emission mechanisms, the mag-
netic field should determine the position angle. The radio
emission at 410 MHz (see Manchester 1971) changes position
angle by 20°-30°, with uncertainties of that order. Equation
(31) indicates that for the Crab pulsar ry > ry for the radio
regime but r, <7, for the optical. The nearly coincident
arrival times of the peak in the radio through y-ray pulses
argues for approximate spatial coincidence of the emission
regions of various frequencies. The dramatically different
change in position angle between optical and radio is consis-
tent with the view presented here that rj is in two different
magnetic field regimes.

Kristian et al. find that the approximate orientation angles
for the Crab are « =~ 83° and i = 90°, consistent with observa-
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Fig. 5—3ame as Fig. 4, except thaty, = 3

tions of the interpulse, presumably originating from the

opposite pole. It is interesting that for a vacuum wave for
i w2, tan ¢ = §/(n/2 — o) for ry ¥ 1., which is identical to
the r,,) < ry, limit, indicating that a vacuum wave ficld will not
fit the Crab field for v, $ #y.. This argues for being in the
“wind” regime where tan—0 for r,» r.. However,
absence of a more detailed magnetic field configuration pre-
vents a detailed comparison of radio data with theory.

Other short-period pulsars may have ry > r.. For PSR
1937421, P=16x%x10"%s and B, =35 x 10~* (Backer,
Kulkarni, and Taylor 1983). Equation (29) indicates that
for this pulsar, below ~26 GHz r, will be greater than ry.
Stinebring (1983) and Stinebring and Cordes (1983) find that
the polarization changes by ~45° during each pulse com-
ponent, This is a relatively small swing and is consistent with
being in either the wind or dipolar zone. As indicated by equa-
tion (17}, we expect Ayr to approach zero as vy decreases, but as
with the Crab the exact behavior requires a more detajled
magnetic field model. The Vela pulsar (P = 0.083 s, B,, = 3.3)
and PSR 1953 +29 (P = 6.1, B,; = 2.5 x 10~?) both are pre-
dicted to have r; ~ .. PSR 1953+ 29 is weakly polarized, and
position angle data are not availabie (Stinebring et al. 1984).
The Vela pulsar does show smaller Ay as v, decreases
(Komesaroff, Morris, and Coocke 1970), but this has been
shown to be a result of interstellar scattering (Komesarofl,
Hamilton, and Ables 1972), After correcting for scattering they
find no frequency dependence in position angle [rom 300-
1400 MHz, to within the measurement errors. However, in all
three of the above pulsars, high time resolution, pulse-by-pulse
measurements are required to obtain accurate position angles

and to remove the effects of “orthogonal modes™ (see, e.g.,
Backer and Rankin 1980).

VI. RISCUSSION AND CONCLUSION

We estimated the polarization limiting radius (r,;} using the
results of Cheng and Ruderman 1980 (CR) and Stinebring
1982, We find that r,, approaches r,, if P ~ 0.06 s and B, ~
10'* G, This manifests itself in the polarization data as a shai-
lower swing in position angle. We have used the Deutsch
(1954) magnetic field as a representation of the field interior to
the light cylinder and estimate the effects of a wind exterior to
the light cylinder. The observational data summarized by
Narayan and Vivekanand (1983) are consistent with this work.
However, their theoretical interpretation that pulsar beams are
more elliptical at short periods is ad hoc, and it appears that
these results can be explained more economically as a natural
consequence of polar-cap, pair creation models, with approx-
imately circular beams.

Roughly circular beams are also obtained by Backer (1976)
who found, on the basis of the frequency of single- and double-
pulse components, that the distribution of pulsar pulse com-
ponents is consistent with having emission in circular hollow
cones. Backer found that the ratio of pulsars with resolved
double or complex pulses to those with simple or unresolved
double pulses was about one to one. Binning the pulsars into
the same period bins (with boundaries at 0.388 and 1.2 5), as
was done for the polarization data, reveals that this ratio does
not depend on period, within the statistical uncertainty. NV,
however, find that the hollow portion of the cone of emission is
roughly circular and does not depend on period. Their model
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thus predicls a large ratio (>5:1) of simple to double or
complex pulsars in the short-period bin. This is not supported
in Backer's (1976} data.

Further, the apparent absence of pulsars in most plerions
argues for a small beaming angle. The quantity N (cf. eq. [40])
is the fraction of 4 st swept out by one pole of a pulsar
averaged over « and i. If a pulsar has two emitting poles, then
to order &3 the fraction of pulsars which, on average, are
beamed in our direction is given by 2N. &, = 10° implies that
~ 27% of the sufficiently bright pulsar’s may be seen, while NV
would predict nearly 80% of the short-period pulsars would be
observable given their ~5 to I ratio of major to minor axes.
This assumes that the plerion-embedded pulsars are sufficient-
ly bright to be detected. However, the very existence of
plerions, i.e., supernova remnants with radio or X-ray emission
distributed across the remnant, has been argued as evidence for
young, luminous, pulsars (Weiler and Panagia 1978). Of the 13
known galactic plerions discussed by Seward (1982} (including
W28, Kes 27, and W44), two are apparently accretion powered
and are morphologically different than the other 11. Of the
remaining 11, 10 are sufficiently nearby to contain observable
pulsars. That is, if the Vela or Crab pulsar were placed in these
remnants, they would have an observed Aux above the sensi-
tivity limits of the Jodrell Bank survey (see Davies, Lyne, and
Seiradakis 1972) and second Molongolo survey {see Manches-
ter et al. 1978). (3C 58, G74.9-+1.2,and CTB 80 were not in the
coverage of the latter survey, however.) Only three (30%) of the
10 contain observed pulsars (Crab, Vela, and MSH 14-52). Sel-
ection effects such as insensitivity to short-period pulsars,
large-dispersion measures, and high background levels in the
remnants have decreased the likelihood of observing pulsars in
these remnants, however. Although the small fraction of
plerionic pulsars is consistent with the small beaming angle
hypothesis, the more sensitive surveys, such as described by
Lyne (1984), are required to determine whether or not this
small number is in fact due to selection effects.

NV argued that the preponderance of pulsars with inter-
pulses to have short rotation periods is evidence for elongated
beams at short periods. If pulsars have emission beamed from
both magnetic poles, each with opening polar hal-angle {; (in
the dipole-rotation axis plane), then the fraction of all pulsars
N, which are beamed in our direction and which have inter-
pulses is given by

2 w2
N;= J di sin J’ du sin a & EH2 + O(ER) . (44)
#i2—&r m—i-Cr

Here we have assumed the same distributions in i and « as in
equation (40) and have only included interpulses from opposite
poles. Thus the fraction of observed pulsars with interpulses is
~NJ2N — N) = &f(m — &) If &5 = 50° as suggested by NV
for short-period pulsars, nearly 40% should have interpulses,
while 5%—6% should for a 15°-20° beam diameter. Although
NV found consistency with their beam model! in their sample of
30 pulsars, when a larger sample is used the results are not as
compelling. OFf the 149 pulsars listed in Manchester and Taylor
(1977), 35 have periods less than 0.38 5, 77 have periods
between 0.388 and 1.2 s, and 37 have periods greater than 1.2 s.
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In the short-period group four are observed to have inter-
pulses, while if &, = 10°, 2+ 1 are expected, and for £, = 50°,
13 4+ 4 would be expected. In the second group, only one is
abserved while 5 + 2 are expected for £y = 10°, and in the last
group one is observed while 2 + 1 should be present for the
same . Thus, there seems to be more of an underabundance
of pulsars with interpulses at long peried, than an over-
abundance of such pulsars at short period. This could be a
consequence of pulsar alignment, rather than clongated beam
size.

The assumed beam shape has consequences in determining
the pulsar birth rate. Lyne, Manchester, and Taylor (1985) put
the pulsar hirth rate at one hirth every 50 yr for a beaming
angle of 15° while a birth rate of one per 100 yr is implied if
short-period puisars have highly elongated beams. Both values
are consistent with a supernova rate of about one per 30 yr (see
Lyne, Manchester, and Taylor 1985, and references therein).

We have argued that further evidence for shallow polariz-
ation swings due to rotationally induced components to the
magnetic field is found in the frequency dependence of the
Crab polarization. The shallow polarization swing at radio
frequencies contrasts to the nearly 180° swing at optical wave-
lengths. There is no abvious interpretation of these data in the
elliptical beam model. '

It has recently come to our attention that Shitov (1985) has
also estimated rotational effects on pulsar polarization.
Aithough using a different estimate of the rotationally induced
magnetic field, he points out’ that-the inflection point in the
polarization curve (i vs. 8) will occur at values of 8 which
precede the center of symmetry of the puise if the emission is at
sufficiently high altitude, Our work shows that this effect also
occurs if ry, is sufficiently large (even though r, may be small),
as is verified in Figure 1. Shitov finds that a number of pulsars
appear to demonstrate this effect and that it is most pro-
nounced at short rotation periods.

Our results rely on a number of assumptions concerning the
magnetic field and plasma parameters. Tn patticular, we have
ignored the effect of the polar current in changing the magnetic
ficld direction of the polar field lines. At smallry, this may have
the efect of adding a small twist to the field lines, while for
rp— Iy, the radio beamn passes through field lines which
contain a decreasing fraction of the current and so this effect
may be minimal. We have also ignored plasma components
other than the electron-positron component in determining ry.
Nevertheless, the calculations are consistent with the observa-
tions, and indicate that the magnetic field interior to #,, may in
a crude sense be approximated by the Deutsch model. Thus,
we have shown that the polarization data can by these con-
siderations be used as a probe of the magnetic field orientation
in regimes quite removed from the radius where the radiation
is emitted. ‘

It is with pleasure that I thank A. K. Harding, J. Arons, D.
Backer, D. Helfand, D. Stinebring, and the referee for useful
sugpgestions and stimulating conversations. This work was sup-
ported by a National Research Council Resident Research
Associateship at the Goddard Space Flight Center.
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